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CHAPTER  SYNOPSIS 

The  chapter is concerned  with  the  design  of  planar  dielectric  layer  diffraction gratings, 

which exhibit sharp  resonances  due to the  coupling  of  exterior  evanescent  diffractive  fields 

to the  leaky  modes  of  dielectric  waveguides.  In  these cases efficient  switching  of  energy 

between  (nearly)  totally  reflected  zero-order  mode  and  (nearly)  totally  transmitted  zero- 

order  mode is achieved  over  a  small  variation  in  wavelength,  with  proper  choice  of  the  cell 

size. Such property  leads  to  the  possibility of  filter  designs whose arbitrarily  narrow 

linewidths can be  controlled by  the  choice of modulation  amplitude  and  mode  confinement. 

Adopting  an  inverse approach, the  feasibility  of  novel  designs  in  this  class  of  devices is 

demonstrated,  using  the  genetic  algorithm  library PGAPACK to  solve for material  dielectric 

constants and  geometric  boundaries  defining  homogeneous  regions of  the  periodic cell. In 

particular,  genetic  algorithms  show  that  simple  geometries,  not  previously reported, 

utilizing  a  small  number of layers  and/or gratings, can  be found to yield bandpass or 

stopband filters  with user defined  linewidth  at  microwave frequencies. The  evaluation  of 

the  fitness  of  a  candidate  design  entails  the  solution of  the forward  scattering  problem for 

the grating. We  have  implemented  two  approaches;  the  first  is  a rigorous coupled-wave 

model, whereas the  second  involves  an  integral  equation for the  electric  field  in  the  cell 

solved using the  method  of moments. The  second  approach  can  handle  very  general 

geometries, although  it  might  be  perhaps  not  as  accurate  as  the first. For this case, since 



the  solution of  many  integral  equations is very  time consuming, we  devised  strategies  to 

reduce  the  computation.  Our  implementation  is made  numerically  efficient  by  using  only 

very few design frequencies, and  accurately  approximating  a  given  filter  transfer  function 

by a  quotient of polynomials  which  are  functions of frequency. Additionally,  the  problem 

impedance  matrices  are  conveniently  represented  as  the  product  of  a  material  independent 

matrix  and  a  vector  of  dielectric constants, thus  allowing  us  to  fill  the  matrices  only once. 

Our  code has been  parallelized for the  Cray T3D, to  take  advantage  of  the  parallel 

capabilities offered  by  PGAPACK.  The  main  features  of  this  genetic  algorithm  library  are 

discussed, and  simple  example  programs  illustrating its use  are presented. The results 

from  a study of  the solution  convergence  and  properties  as  a  function  of  some  of  the  key 

parameters of the  genetic  algorithm  are  discussed.  Novel  solutions are illustrated for a  very 

narrowband  single  grating  transmission  filter,  and  a  relatively  broadband  double  grating 

reflection  filter  at  microwave  frequencies. 

1.INTRODUCTION 

1.1. Dielectric  grating filters 

It  has  been  demonstrated  that  planar  dielectric  layers  combined  with  diffraction 

gratings  exhibit sharp resonances  due to the  coupling  of  exterior  evanescent  diffractive 

fields to the  leaky  modes  of  dielectric  waveguides.  With  proper  choice  of  the  cell  size 

efficient  switching  of  energy  between  (nearly)  totally  reflected  zero-order  mode  and 

(nearly)  totally  transmitted  zero-order  mode is achieved  over  a  small  variation  in 

wavelength. Such property of  frequency  selectivity  leads to the  possibility of  filter designs 

whose arbitrarily  narrow  linewidths  can  be  controlled  by  the  choice  of  modulation 

amplitude  and  mode  confinement.  In  optics  the  guided-mode  resonance  effect has been 

combined  with  classical  antireflection  properties of  thin  film structures, leading  to  the 



design  of  symmetric  reflection filters, with  low  sidebands  over  wavelength  ranges  related 

to the  number of films used  and  their  dielectric  constants [ 11. It  is  known  that  the  sideband 

reflection  can  be  further  decreased  and  extended  over  a  larger  spectral  range  by  adding 

more  homogeneous  layers  with  dielectric  constants  and  thicknesses  determined  by  anti- 

reflection  conditions.  The  position of  the  resonance is determined  primarily  by  the  grating 

period, and  the  linewidth of  the  filter  can  be  controlled  by  the  modulation  of  the grating. 

Recently,  a  combination of  guided-mode  resonance  and  high-reflection  layer  design has 

been  demontrated to yield  transmission  bandpass  filters [2]. A reflection  filter  of  this  type 

has also been  demonstrated  in  the  microwave  region [3]. This  work explores the 

possibility  of  finding  new  types  of  waveguide-grating  filter solutions in  the  optical as well 

as  the  microwave regions, by  investigating  different  geometries  and  materials for gratings 

and  layers. This approach  might  lead  to  alternative  or  improved  design solutions. 

In  the  above  studies 'forward scattering' analysis  techniques  were  used to obtain 

the  filter response, starting  from  a  set of user  specified  filter  parameters  and  relying on 

known properties  of  anti-reflection  (half-wavelength)  or  high-reflection  (quarter 

wavelength)  homogeneous layerdgratings for reflection  and  transmission filters, 

respectively. By contrast, we  start  from  a  desired  filter response and  determine  the 

grating/layer  configuration  and  dielectric  constants of the  solution,  without  constraining  the 

thicknesses to  be  a  specified  fraction of  the resonance  wavelength.  This  approach is 

particularly  appealing  in  the  microwave  region  where  extending  the  approach  traditionally 

used  in optics would  yield  solutions  which  are  too  thick  for  practical  use.  At  the  same  time 

the  potential  reduction  in  size  can  be  beneficial  in  optics too, since  thinner  filters  have  a 

wider  range of application. 

The particular  type of design  described  here  can  be  thought  of as an inverse-source 

problem, since it  entails  finding  a  distribution of sources which  produce fields (or 

quantities  derived from them)  of  given  characteristics.  Electromagnetic sources (electric 

and  magnetic  current  densities)  in  a  volume  are  related  to  the  outside fields by a  well  known 



linear  integral  equation.  Additionally,  the  sources  are  related to the  fields  inside  the  volume 

by a constitutive equation,  involving  the  material  properties. Then, the  relationship  linking 

the fields outside  the  source  region to those  inside is non-linear, in  terms  of  material 

properties such as  permittivity,  permeability  and  conductivity. In  our  approach  the  solution 

of  the  non-linear  inverse  problem  is  cast  as  a  combination  of  two  linear steps, by  explicitly 

introducing  the  electromagnetic  sources  in  the  computational  volume as a  set  of unknowns 

in  addition to the  material  and  geometry unknowns. This  allows to solve for material 

parameters  and  electric  fields  in  the  source  volume  which  are  consistent  with  Maxwell’s 

equations. In order to reduce  the  number of  unknowns  and  the  complexity of the operators, 

we  first  invert  for  the  permittivity  and  geometry  only  in  the  minimization  of  a cost function 

and then, given  the  materials  and  the  geometry,  we  find  the corresponding electric fields 

through forward scattering  calculations.  The sources thus  computed  are  used to generate 

the far fields and  the  synthesized  filter  response. 

1.2. Motivation for use of Genetic  Algorithms 

Some important  issues  can  be  explored  with  an  inverse approach. The  first  relates 

to the shape of  the  resonance response of  the  filter;  in  particular,  we  have  investigated  the 

possibility of synthesizing  a  transmission response described  by  a  Lorentzian  lineshape 

with  controllable linewidth, to achieve  a  very  narrow band. On the  other hand, we  have 

also searched for solutions which  have  broadbanded response and sharp cutoff, to 

demonstrate  that  are  also  obtainable  with  these  type of structures.  A  second issue concerns 

the  actual  number  and  configuration of gratingdlayers required  given  a  specific  design 

curve;  specifically,  we  have  been  looking for the  ‘simplest’ solutions, i.e. those which 

involve  the  smallest  number  of gratings. In  particular,  we  have also investigated  the 

possibility  of  using  more  than  two  materials  to  make  one grating, to achieve  symmetric 

responses, exhibiting a  sharp  resonance  and  low side-bands. We  have  seen  that  there is a 



trade-off  between  the  values  of  the  dielectric  constants  (resulting  in  the  modulation)  and  the 

thickness of  the  periodic cell. Since  it  is  our  interest  to  examine  the possible existence of 

designs  which  might  not  be  known,  we  have  not  restricted  the  choice of dielectric constants 

to a  small  set of  familiar values, but  instead  have  considered  all  the  materials  that  can  in 

principle exist. The  above  requirements  translate  in  the  necessity  to  sample  the  parameter 

space globally, rather  than  proceeding  from  a  given  starting  point  solution  and  effecting 

only local changes. For this  reason  we  have  chosen  to  perform  the  inversion process using 

a  genetic  algorithm. 

Genetic algorithms  (GAS)  were  developed by John  Holland [4] and are based  on  an 

analogy  with  natural  selection  and  population genetics. The  past  several  years  have  seen 

increasing  interest  in  using  GAS  to  find solutions to  difficult  optimization  problems  in  a 

variety  of  application  areas,  and  GAS  have  proven  to  be  a  successful  and robust technique. 

There are several reasons for this. First, GAS  make  no  assumptions  about  the  function  to 

be  optimized,  their  only  requirement  being  a  performance  measure,  some  form of problem 

representation, and  operators  that  generate  new  population members. Second, GAS  are  a 

global  optimization method, as  opposed to a  local  gradient-based technique, and  look for 

solutions in  a  broad  range of the  parameter space. GAS  and  gradient-based  optimization 

methods  have  complementary  strengths  and  weaknesses;  a  hybrid  algorithm  of both 

methods can often  outperform  either  one  individually. Finally, GAS  are  a  naturally  parallel 

algorithm  and  can  readily  take  advantage  of  the  computational power of  modern  parallel 

computers. 

As  opposed to other  optimization  methods,  GAS  produce  a  population  of  candidate 

solutions instead of just a  single solution, where  the  problem unknowns have  been 

represented by  a string of (encoded) numbers.  Then  GAS  work  by assigning a  merit  value 

to each string in  the  population  according to a  problem-specific fitness function. A 

‘survival-of-the  fittest’  step  selects strings from  the  current population, according to their 

fitness. These strings recombine  using  operators such as crossover or  mutation to produce 



a  new  generation of strings that  are  more  fit  than  the  previous ones, thereby  evolving  the 

solution  towards  a  global  extremum.  The  parallel  genetic  algorithm  package  PGAPACK [5] 

has  been  used  in our work.  Key features of  PGAPACK  are  discussed  in Section 11 with the 

objective of giving  the  reader  an  appreciation  for  the  library’s  full  range  of  capabilities,  and 

not just the  specific  aspects  utilized  in  this  study. 

1.3. Application of GAS to  design  problems  in  optics 

A  variety  of  optimization  problems  employing  genetic  algorithms  have  been 

reported  in  the  literature  in  optical  signal  and  image processing, diffractive optics, thin-film 

optics, image  formation  and  tomography  [6-201.  Genetic  algorithms  have  been  utilized for 

optimization  of  the  quantized  phase  or  amplitude  in  each  element  of  a  two-dimensional 

array to achieve  the  desired  far-field  intensity distribution. These  display  devices  can  find 

practical  applications  in  optical  information processing, optical  pattern recognition, optical 

interconnections  and  spatial  filtering.  Yoshikawa et al. [6] have  generated  a 64x64 element 

array  with  16  phase levels that  reconstructs  a  desired  simple  image  upon  illumination  with  a 

uniform,  monochromatic  light  source.  The  design of a  spatial  filter  with  a  binary  amplitude 

distribution  used  in  a  joint-transform  optical  correlator  to  discriminate  between  two  given 

images has been  reported  by  Mahlab  et al. [7]. Takaki  et  al. [SI improved  the  pattern 

discrimination  ability  in  an  optical  filtering  system  employing  a  liquid-crystal  active  lens  by 

utilizing  a  genetic  algorithm to find  the  optimum  8-level  phase  distribution  in  a 64x64 pixel 

array. An optimization  of  the  spatial  amplitude  filter  in  a  generalized  optical Fourier 

transform processor for a  simple  pattern  recognition  task  was  presented  in [9]. The 

problem  of  image  deconvolution  utilizing  a  microgenetic  algorithm  was  addressed  by 

Johnson and Abushagur [ 101. Numerical  examples  illustrated  the  reconstruction  of two 

binary  images from their  convolution  without any prior  knowledge  about  the  two 

distributions except their  regions of support. 



The  design of diffractive  optical  elements may require  the  encoding of large  non- 

periodic  phase  arrays  that  would  involve  a  large  chromosome  chain  in  the  genetic  algorithm 

thus  becoming  computationally  expensive. To overcome  this  problem  Brown  and  Kathman 

[ 1 13 reduced  the  number of  variables  by  encoding  the  phase  function of the  diffractive 

element by its  Fourier  coefficients  and  used  a  genetic  algorithm  with  floating  point  variables 

and  variable  mutation  variance to design  single  and  multiple,  cascaded  diffractive  elements 

for laser beam shaping. 

An optical  implementation of a  genetic  algorithm  was  demonstrated  by  Friedman  et 

al. [12] in a  hybrid  electro-optical  system  that  exploits  the  inherent  parallelism  of  optical 

architectures.  The  computational  speed  can  thus  be  increased by allowing  the  vector-matrix 

multiplications  and  summations of  binary  elements  to  be  performed  optically  while  the  rest 

of the  algorithm  is  executed by a  digital  computer. 

Promising results for application  of  genetic  algorithms to tomography to achieve 

increased  accuracy  over  conventional  reconstruction  methods for reduced  number  of 

projections  have  been  reported  recently by  Kihm  and  Lyons [ 13,141. To improve  the 

convergence  and  reduce  the  computation  time for the  reconstruction of  the  unknown  field 

from its measured projections, a  hybrid  genetic  algorithm  was  devised  where  each  new 

generation  is  partially  created  by  the  conventional  genetic  algorithm  operators  and  partially 

by  a concurrent Simplex operator [ 141. 

Genetic  algorithms  have  been  proposed by E. Betensky [ 151 as useful tools in 

optimization  of gaussian optics systems for improved  lens design. To minimize  the  merit 

function, the  algorithm  selects  the  best  set  of  structural  changes to be applied  to  a  starting 

design from a  predefined  list  of  permissible operators. X. Chen  and K. Yamamoto [ 161 

have designed a  camera  lens  with  seven  elements  by  encoding  the  physical  parameters  of 

each  lens  in  a chromosome. The  authors found the  definition  of  the  merit  function  to  be 

more  important  in  convergence  towards  an  optimum  solution  rather  than  the  evolution 

strategy  itself  and  used  a  two  level  merit  function  that  includes  the  desired  lens 



specifications (focal  lengths,  f-number  and  field of view).  In  a  non-imaging  application of 

genetic algorithms, I. Ashdown  [17]  has  discussed  the  optimization  of  the  near-field  and 

far-field  photometric  distribution for the  design of direct  and  indirect  illuminating  systems. 

The  design of  diffractive  optical  elements  using  a  genetic [ 181 and  microgenetic 

algorithm [19] was  reported  by  Johnson  et al. Fan-out  gratings for optical  interconnection 

applications  have  been  obtained  with  the  desired  intensity  in  each  diffracted order by 

encoding  the  phase of each  cell of a  NxN  matrix of cells  and  using  fast  Fourier  transform to 

calculate  the  diffraction  pattern.  A  rigorous  coupled  mode  analysis  was  employed  to 

compute  diffraction  efficiencies for binary  periodic  structures  with  subwavelength  feature 

sizes  and  multiple layers. These  corrugated  dielectric  gratings  were  optimized  with  the 

microgenetic  algorithm to achieve  reflection  and  transmission  characteristics  of various 

diffractive  optical  elements  such  as  polarizing  beamsplitters,  antireflection coatings, 

resonant  reflectors  and  fan-out gratings. The  resonance  reflector  generated  with  the 

microgenetic  algorithm  was  found by  optimizing  a  dual-surface  corrugated  grating to yield 

100%  reflectance  at  one  given  wavelength.  This  subwavelength  structure  can form the 

basis of narrow-band reflection [1,20] and  transmission  filters [2,21] exploiting  the 

guided-mode  resonance effect. However, to  obtain  desired  filter  characteristics  with 

specified linewidth, high  efficiency,  symmetrical  lineshape  and  low sidebands, the 

optimization  process  must  be  performed for a  set  of  wavelength  points  spanning  the  entire 

spectral  range of interest  and  allowing  the  algorithm  to  search in a  wider  parameter  space  to 

find  the  period  and  fill  factor of  the grating  and  the  optimum  thicknesses  and  refractive 

indices of a  multilayer  structure. 

Michielssen et al.  [22]  have  designed  practical  lowpass  and  highpass  optical filters 

using a  real-encoded  genetic  algorithm.  The  dielectric  constants  and  the  number  of 

homogeneous  layers  were  fixed  allowing  the  genetic  algorithm  to  optimize  the  thicknesses 

of  the  layers to obtain  the  specified  response. This genetic  algorithm  implementation  can  be 

applied  to  design  other  types  of  optical components, however, the  use  of  only 



homogeneous  layers  restricts  the  range of devices  that  can  be designed. Furthermore, 

structures containing  subwavelength  gratings as well as homogeneous  layers  can  produce 

optical  components such as  bandpass filters, antireflection surfaces, wave plates, and 

polarization-selective  mirrors  with  significantly  fewer  layers  than  the  corresponding  devices 

that  employ  homogeneous  layers  only. 

11. PGAPACK  GENETIC ALGORITHM LIBRARY 

PGAPACK is a (parallel)  genetic  algorithm  library  that  provides  most  capabilities 

desired  in a genetic  algorithm,  in  an  integrated,  seamless,  and  portable manner. It supports 

multiple data types,  Fortran  and C interfaces, a simple  interface for novice  and  application 

users, multiple  levels  of  access for expert users, object-oriented design, extensibility, 

multiple GA operators,  and  parallel  portability  across uniprocessors, multiprocessors, and 

workstation networks. Options  allow  the  user  to  specify  the  population size, stopping 

criteria, and  many  additional  features  including  whether  duplicate  strings  should  be  allowed 

in  the population, and  whether  to  mutate  or crossover strings, or to  mutate  and crossover 

strings. Furthermore, it supports native  data  types:  binary-valued,  integer-valued,  real- 

valued, and  character-valued strings. The  user  can  customize  the  genetic  algorithm  by 

supplying function(s) to customize a particular  operator(s)  while  still  using one of the 

native  data types. Additionally,  the  user  can  define a new  data type, write  the  data-type- 

specific low-level GA functions (i.e., crossover, mutation, etc.), and  have  these functions 

executed by the  high-level  data-type-neutral  functions. A data-hiding  capability  provides  the 

full functionality of the  library to the  user,  in a transparent manner, irrespective of  the  data 

type used. 

In its simplest form, a program  using  PGAPACK can be  written invoking only four 

library subroutines and a string  evaluation function. Figure 1 shows a simple  example 

program  which  maximizes  the  number of bits of  value 1 in a string. PGACreate  initializes 



PGAPACK,  by defining a  context  variable, ctx, which  contains  the  identifying  features of 

the  optimization  being  performed  and  which is passed to the  library subroutines called  in 

the  program.  The  user  need  specify  only  three  parameters:  the  data type, the string length, 

and  the  direction of optimization. All other  parameters  have  default  values  in  this  mode  of 

usage. PGASetUp initializes  all  parameters  and  functions  not  explicitly  set  by  the  user  to 

default values. The  genetic  algorithm  'machinery' is encapsulated  within  the  single 

subroutine PGARun. Its second  argument is the  name  of  a  user-provided function, 

'evaluate', that  will  be  called  whenever  a string evaluation is required. 

PGAGetBinaryAllele  returns  the  value of  the  i-th  bit  of  string  p  in  population pop. 

PGADestroy  releases  all  memory  allocated by  PGAPACK. 

types of encoding 11.1. The  merits of different 

An area of controversy  in 1 the  GA literature  is  how to represent  real-valued  problem 

variables. There  are  two  choices;  a  bit  string  encoding or an  explicit  real-valued 

representation. In  a  bit string representation,  a subset of N bits  in  the string is used  to 

encode each real  value.  Retrieving  the  encoded  real  value from a  binary substring is then  a 

two-step process. First, the  substring is decoded into an  unsigned integer k E [0,2N - 11 

Second, k is mapped  to  a  real  value r on  the  interval [L,U] according to 

u-L 
2N - 1  

r = k x  - + L  

There are several  reasons  for  the  popularity of  the  binary  string  representation.  One  reason 

is  historical;  the  work of  Holland  and  his  collaborators  popularized  the  binary 

representation. Additionally,  binary strings are  general  enough  to  encode  almost  any  data 

structure, are  easy  to  manipulate  and  use  straightforward  operators (e.g., bit  complement 



mutation). Furthermore, binary strings are  easier  to  analyze  theoretically  than  more 

complex representations, and  theoretical  arguments  have  been  put  forward  that  claim  they 

are  optimal  in  the sense of  the  number  of  patterns  each  bit  can  represent [23]. However, 

binary strings have  several  limitations. First, they  require  extra  computational  effort  to 

decode into real values. Second, depending  on  the  problem,  decoded  real  values  may  not 

be  accurate  enough  to  represent  the  optimal  value  of  the  decision  variable  and  a  large 

number of bits may  be  necessary  if a  high-precision  result is desired. However, as  the 

number of bits increases, the  size  of  the  search  space grows exponentially. Furthermore, 

hybrid  algorithms  that  combine  a GA  with  a  gradient  method for local  improvement  are 

often  most desirable. Bit  string  representations, however, are  uncommon  in  gradient 

methods, thus making  the  development  of  a  hybrid  algorithm  more difficult. Finally, in  a 

bit string representation  two  numbers  that  are  contiguous  in  their  decimal  representations 

may be far from each  other  in  their  binary  representations.  For  example, 3 and 4 are 

consecutive  integers,  yet  their  3-bit  binary  representations, (01 1 } and { loo}, differ  in  the 

maximum  number  of  bit  positions  (technically,  this is known  as  a  Hamming cliff). As a 

result, small  changes  to  the  string may result  in  large  changes to the  fitness values. An 

alternative to the  standard  binary  encoding  that  maintains  a  contiguous  representation is a 

Gray code encoding. Gray  codes  define an alternative  different  mapping  of  binary strings 

to integer  values  such  that  consecutive  integers  differ  in  only  one  bit position. PGAPACK 

provides functions that  allow  the  user  to  encode or decode  integer or real  values  using 

either  a  standard  binary  or  reflected  Gray code representation. 

Rather than  use  a  binary  or  Gray encoding, however,  many  prefer to use  an  explicit 

real-valued string. A  number of empirical  studies [24-281 favor  using  a  real  representation 

because  of  more  accurate answers, greater  consistency  from run-to-run, and  faster 

computational  performance  over  those  of  a  binary one. There  are  several  advantages  to  a 

real encoding. First, unless many  bits  are used, real  encodings  have  higher  precision  than 

binary encodings. Second, real  encodings  are  computationally  more  efficient  since no 



encoding  and  decoding  needs  to  be done. Third, as  a  result of avoiding  Hamming  cliffs 

real-valued  strings  have  the  property  that  small  changes  in  a variable’s value  lead to small 

changes  in  the  function  value. Fourth, real  encodings  allow for a  larger  range  of 

(sometimes  more  natural)  operators  for  crossover  and  mutation. Fifth, real  values  are  more 

natural  and  intuitively  closer to the  problem  space,  since  it  is  easier for a  person to grasp  the 

value  of  a  real  number  than  a  string  of bits. Finally, by  using  a  representation  that  is  in 

common  use  it  is  easier to create  a  hybrid of the  GA  with  another  optimization  method. 

11.2. Data Structure  Neutrality and Custom Data Types 

Several  features of PGAPACK  were  developed  specifically for application users 

who  wanted  a  versatile, powerful, easy-to-use  GA  package.  These  features  include 

defining custom data types, the  ability  to  easily  integrate  hill-climbing  heuristics  within  a 

GA, and  a  parallel  implementation.  PGAPACK  is  a  data-structure-neutral library. By  this 

we  mean  that  a  data-hiding  capability  provides  the  full  functionality  of  the  library 

transparently to the  user, irrespective of the data type (coding) used. PGAPACK supports 

four  native  data types. The Bit  data  type  (i.e., 111011111) is  the  traditional  GA coding. Here it 

is implemented  by  using  each  distinct  bit  in  a  computer  word  as  a gene, making  the 

software very  memory-efficient.  The  Integer  data  type (i.e., 131912141) supports strings that 

are  integer valued. Such codings are  often  used  in  routing  and  scheduling problems. The 

Float data type (i.e., 14.217.116.310.81) is  often  used  in  numerical  optimization  applications. 

The Character string data type (i.e., Ihlelllllol) is  useful  in  symbolic  applications. 

The use of a context variable (ctx)  allows  the  choice  of  data  type to be hidden. The 

context  variable is a  pointer  to  a  C  language  structure  which is itself  a  collection  of  other 

structures. These (sub)structures  contain  all  the  information  necessary for a GA run such as 

data type, parameter values, which  functions  to call, operating  system  parameters, 

debugging flags, initialization  choices,  and  internal  scratch  arrays. By ‘hiding’ the data  type 



selected  and  specific  functions  that  operate  on  that  data  type  in  the  context  variable,  the 

high-level  functions  can  be  called  independently of  the data  type  selected. 

PGAPACK  may be extended in  two  ways. First, the  user  may  replace  some  of  the 

standard functions with  user-defined  functions for use with  one of the  native  data types. 

Second, it may  be  extended by defining  a new data  type. To create  a  new  data  type  the user 

must  write  data-structure-specific  functions  to  allocate  memory,  perform  mutation,  and 

perform crossover. We  illustrate  the  definition of a  new  data  type  with  an  example,  aimed 

at showing the  basic steps involved. Consider  designing  a  composite  material  where  the 

goal is to minimize  the  weight  subject  to  satisfying  certain  electromagnetic  and  geometric 

constraints. The  choices  to  be  made  are  the  type of  material  to use  in  each  layer of the 

composite  and  the  thickness of the  material.  The  choice  of  material  can  be  represented  by  an 

integer  pointing  to  an  entry  in  a  data-base of  electric  permittivitiedmagnetic  permeabilities 

and  the  thickness of  the  material  by  a  real value. Such a  formulation  would use a string of 

length twice  the  number of layers.  Half  the  genes  would  be  real  and  the  other  half integer. 

Figure 2 contains  the  main  program  for  this  example.  NUM-LAYERS  and 

NUM-MATERIALS  are  the  number  of  layers  in  the  composite  material  and the number  of 

material  choices  for each layer,  respectively.  The  structure composite defines  the  new  data 

type. This may  be  interpreted  as  a  logical string consisting of  an integer part, layer, that 

specifies  the  material  type,  and  a  real  part, thick, that  specifies  the  thickness  of the selected 

material. Next, function  prototypes for the user's objective  function (weight), the 

evaluation  function  (which  plays  the  role of a  wrapper  in  this  example,  as  will  become  clear 

in  the following), and  the  mutation appear. For  the sake of brevity  only  the  mutation 

function  is  outlined here, but  a  complete  program  would  require  definitions for several 

other functions [5]. Note the use of  PGA-DATATYPE-USER in  the  PGACreate  call  to 

specify  that  a  custom  data  type  will  be  used  and  the  call  to  PGASetUserFunction to specify 

the user's mutation  function  (CompMutation). 



Figure 3 contains  the user's mutation  function CompMutution for the  composite 

data type. Each  gene  has a probability mr of  being changed. If a mutation  to a real  gene 

occurs, a Gaussian  random  variable  is  added to  the  current  real  value. If a mutation  to  an 

integer  variable occurs, the  existing  material  choice is replaced  with one that  is  randomly 

selected. When  using  custom  data  types it is not  possible  to  maintain the (p,pop) 

abstraction  to  specify an  individual (a string  and  associated fields). Instead, 

PGAGetIndividual(ctx,  p,  pop)  returns a pointer to the  individual  (the  string  and  associated 

fields) specified by (p,pop). One  field of this structure is chrorn, the string itself. 

Figure 4 contains  the  evaluation  function.  The  scratch  arrays I and t are  loaded  with 

the  integer  and  real values, respectively.  These  are  then  passed  to weight , the user's true 

evaluation function. This  type of usage  allows weight to be  called  with  no  changes  required 

by  the specific encoding. 

11.3. Hybrid  Genetic Algorithms 

Many successful GA  applications  use  problem-specific  information  contained in 

either the solution encoding, or  in  problem-specific  operators,  or  in a hill-climbing routine. 

The last usage,  combining a GA  with a hill-climber, is often  referred to as a hybrid GA and 

has a broad use. Hill-climbing  heuristics  attempt  to  improve a solution by moving  to a 

neighboring solution of smaller  residual  value.  Whenever  the  neighboring  solution is better 

than  the current solution,  it  replaces  the  current  solution. 

Genetic  algorithms  and  hill-climbing  heuristics  have  complementary strengths and 

weaknesses.  GAS  are  good  at  finding  promising  areas of the  search space, but  not as good 

at  fine-tuning  within  those areas. Hill-climbing heuristics, on  the  other hand, are good at 

fine-tuning, but  lack a global  perspective.  Practice  has  shown  that a hybrid algorithm  that 

combines GAS with  hill-climbing  heuristics  often  results  in  an  algorithm  that  can 

outperform either one  individually. 



There  are  two  general  schemes for creating  hybrid algorithms. The  simplest  is  to 

run  the  genetic  algorithm  until  it  terminates  and  then  apply a hill-climbing  heuristic to each 

(or just the best) string. In  this case, the  hill-climbing  routine starts with  ‘good’ solutions 

found by  the GA. The  second  approach is to  integrate a hill-climbing  heuristic  with  the 

genetic algorithm. PGAPACK supports hybridization  in  several ways. First, by passing 

the  context  variable  as a parameter,  the  hill-climbing  function  has  access to solution  and 

parameter values, debug flags, and  other information. Second, PGAPACK functions allow 

the  hill-climbing  function  to  read  and  write  allele values, to read  integer  or  real  numbers 

encoded as binary  or  Gray code strings,  and  to  encode  integer  or  real  numbers  as  binary or 

Gray code strings. Third, other  PGAPACK  library functions allow  the user’s hill-climbing 

routine  to  read  and  write  evaluation  function  values,  and  to  get  and  set  the  flag  that  indicates 

whether a string  evaluation is up to date. 

11.4. Parallel  Implementation of PGAPACK 

One  way to parallelize a GA is  to  execute  in  parallel  the loop iterations  that  create 

generation t+l from  generation t. Most steps in  this loop, such as crossover, mutation, 

evaluation, can  be  executed  in  parallel.  The  execution  efficiency, however, depends upon 

the  computer  architecture  and  parallel  execution overhead, the  number  of  new  population 

members  created  at  each  generation  (the  degree  of  parallelism),  and  the  computational cost 

of  the steps being  executed  in  parallel  (the  granularity). However, in  many  real-world 

applications  the  dominant  computational  cost  is  the  time to execute  function  evaluations  and 

the  performance  benefits  from  parallel  execution may  be  achieved  by  parallelizing  only  this 

step. The parallel  implementation in  PGAPACK  uses a master/slave  algorithm  in  which  one 

processor, the master, executes  all steps of  the  genetic  algorithm  except  the  function 

evaluations, which  are  executed  by slave processors. Note  that  since  we use a message- 

passing programming  model to implement  the  master/slave algorithm, there  may  be a 



significant  parallel  execution overhead. Focusing only  on  parallelizing  the  function 

evaluations  allows for modest  data  distribution  requirements  (just  the strings to be 

evaluated)  and  minimal  synchronization  requirements. 

There are  two  primary  considerations  in  determining  the  performance  advantage of 

using  the  master/slave model. First, the speedup  will  vary  according  to  the  amount  of 

computation  associated  with  a  function  evaluation  and  the  computational  overhead of 

distributing  and  collecting  information  to  and  from  the  slave processors. Second, the 

number of function  evaluations  that  can  be  executed  in  parallel  will  limit  the speedup. This 

number  depends  on  the  population  size  and  the  number of new strings created  at  each 

generation.  In  a  generational  replacement  model,  the  entire  population may  be  evaluated  in 

parallel.  In  the  more  popular  steady-state  model, however, a  number of  new strings are 

produced  as  a  user  defined  percentage of  the population, and  the  degree  of  parallelism is 

minimal. By default  PGAPACK  replaces 10% of  the  population.  In our experience  this 

percentage  usually  provides  an  acceptable  degree of parallelism,  while  retaining  the 

superior  performance  characteristics of  the  steady-state  model. 

PGAPACK  is  implemented  using  the  message-passing  interface  (MPI)  standard 

[29]. MPI is a specification protocol of a  message-passing  library for parallel  computers 

and  workstation  networks---it  defines  a  set of functions  and  their behavior. 

Implementations of MPI exist for both  sequential (uniprocessors) and  parallel 

(multiprocessors, multicomputers,  and  workstation  networks)  computer hardware, thereby 

allowing  PGAPACK to run  on  all  these  machines  without  any  code  changes. 

111. DIELECTRIC GRATING FILTER DESIGN 

We discuss an  inverse  approach  to  designing  dielectric  filters  realized as stacks of 

inhomogeneous  gratings  and (possibly) homogeneous  layers of materials,  as  described  in 

Fig. 5; in the  last  few  years  such  devices  have  been  demonstrated  in  optical  technology,  but 



they  are  not  common  at  microwave frequencies. The  problem  amounts  to finding the 

stack’s geometric  configuration  and  permittivity  values  which  correspond  to a specified 

reflectivityhansmittivity response. We solve for geometry  and  materials  using  a 

customized  version of PGAPACK to minimize  a cost function  obtained  by  calculating  the 

deviation  between  the  synthesized  value  of reflectivity/transmittivity and  the  desired one. 

For each  candidate  solution  we  calculate  the  correspondent reflectivity/transmittivity by  a 

forward scattering  method;  specifically,  we  evaluate  the  candidate’s  fields or currents 

consistently  with  Maxwell’s equations. These  quantities  act as secondary unknowns, 

whose solution is used  to  obtain  the reflectiodtransmission efficiencies  and  eventually  the 

cost function. In  the  following  we  outline two techniques  that  have  been used for this 

purpose. 

The first technique is a  rigorous  coupled-wave  analysis [30,31], a  differential 

method for obtaining  exact  solutions of  Maxwell’s  equations for diffraction of 

electromagnetic  waves by periodic  structures.  The  method  is  accurate,  efficient  and  stable 

and  has  been  applied to a  wide  variety of gratings  (holographic,  binary  single or multilayer, 

surface relief, dielectric or metallic,  anisotropic) for arbitrary  polarization and angle of the 

incident  beam.  Because  the  accuracy of this  scattering  model  is  well established, we used 

this approach to study  issues  concerning  convergence  and  stability of the GA solutions as  a 

function of  the  different  types  of  encoding  and  other  key GA parameters, for a  single 

grating  reflection  filter. 

The  second  technique consists of numerically  solving  the  integral  equation for the 

electric  field  in  the  periodic  cell  using  the  method  of  moments [32]. While this second 

approach  might  perhaps  not  be  as  accurate,  it  is  more  flexible  in its ability  to  model diverse 

geometries,  even  completely  different  from  that of Fig. 5. Indeed  only  few  aspects of the 

formulation  are  specific  to  the  design  problem at  hand  and  the  reader  will find that  the 

general  methodology is applicable  to  other EM design problems. Since  the  solution of 

many  integral  equations  (one for each  frequency/illumination  angle) is computationally 



expensive, we  devised  strategies  to  reduce  the  required  time.  Although  the  impedance 

matrix depends on the  solution  vector of  materials  and  boundaries candidates, it  can be 

formed  as  a  product of a  solution-independent  matrix  and  a vector. This procedure  allows 

us to fill  the  set  of  frequency-dependent  impedance  matrices  only once. Additionally,  the 

number  of  design  frequencies  at  which  the  integral  equations  are  actually  solved is a  small 

set  of  values  within  the  frequency  range  of  the  desired  filter response. The  reduction is 

afforded  by  approximating  the  desired  filter  response by a  quotient  of  frequency  dependent 

polynomials, through  the  procedure of transfer  function  parameter  estimation  described in 

[33]. A  set  of  design  frequencies is chosen  suffient to find  the  unknown  polynomial 

coefficients. Furthermore, full  advantage  has  been  taken  of  the  parallel  implementation  of 

PGAPACK for the  Cray  T3D. The parallelization  scheme  used for the  genetic  algorithm is 

an intuitive, simple  master-slave  configuration,  where  the  expensive  evaluation  cycles  are 

distributed  among  the processors. A  complete  description  of  this  approach  is  presented  in 

W I .  

111.1. Forward  Scattering  via  Rigorous  Coupled - Wave Technique 

In  the  present  study  the  formalism  of [30,31] is applied  to  calculate  diffraction 

efficiencies of a  multilayer  structure  consisting of  binary  gratings  with  rectangular  dielectric 

constant  profile  and  homogeneous  layers for a  TE-polarized  incident  plane  wave  as 

illustrated in Fig. 5. In  the  grating  layers  the  periodic  modulation  of  the  dielectric  constant 

can be  represented  as a Fourier  expansion 

where  K = 27c/A, A is the  grating  period  and E, are  the  coefficients of  the Fourier 

expansion. 



In the rigorous coupled-wave  approach the  tangential  electric (E,) and magnetic 

(H,) fields inside  a  grating  layer  are  expanded  in  terms of spatial  (Floquet)  harmonics 

=-cc 

where k,, is the  wavevector  component  along x given  by  the  Floquet  condition: 

k,, = k,n, sine-iK, k, is the  wavenumber  in  free space, E, and po are  the  free-space 

permittivity  and  permeability,  and Sy,i (z)  and Ux,i (z) are  the  normalized  amplitudes  of  the 

ith  space-harmonic fields. These  field expansions must  satisfy  Maxwell’s  equations 

assuming  harmonic  time  dependence eJWt and  uniform  field  along  the y direction. 

Substituting  the  field  expressions (2) and  the  dielectric  constant  expansion (1) in 

equations (3) and  eliminating  the  amplitudes Ux,i, one  obtains  an  infinite  set of second- 

order coupled-wave  equations  given by 

d2 SY,! (z’) k 2 .  m 

d (z’) = +’y,i(’’)- k, h=”m cEl-hSy,h(Z’) 

To obtain  a  numerical  solution,  the  infinite  number of coupled-wave  equations are truncated 

to a  finite  number N of harmonics  and  the  eigenvectors  and  eigenvalues of  the  resulting 

NxN system matrix  are  calculated.  The  solution  to  the  system of second-order coupled- 

wave  equations  can  be  written  as 



where q, is the  positive  root of  the  m-th  eigenvalue, Wi,m is the corresponding  eigenvector, 

while C,+ and C; are  unknown  amplitude  constants  to  be  determined from the  boundary 

conditions. The tangential  electric  and  magnetic  fields E,, and H, in  the  grating  region  can 

then  be  obtained from Eq. (2)  and  Maxwell’s equations (3). In  the  homogeneous  layers  the 

tangential  electric  and  magnetic  fields  are  written  as  a sum of forward and  backward 

propagating  plane  waves  with  unknown  constant  field  amplitudes. 

In  the  input  (medium I) and  output  region  (medium 111),  the electric  field  can  be 

expressed  in  terms of  the  incident  and  diffracted  propagating  waves  in  the  form 

where R, and Ti are  the  normalized  electric  field  amplitudes  or  the  reflected  and  transmitted 

diffraction orders, respectively,  and D is the  thickness  of  the structure. The  wavevector 

components  along  x  and  z  are  determined  from  phase  matching  requirements  and  imposing 

the  Floquet  condition k,.,i = ko[nI sine- i (A / A)] , kz,p,i = ( k i  - k:,i)1’2 where  p = I or 111. 

Imposing the  boundary  conditions at  the  interfaces  between  the L adjacent  layers 

and  between  the  structure  and  the  input  and  output  media,  a system of 2N x (L+1) 

equations is obtained  with 2N x L unknown  field  amplitudes  in  the layers, N unknown 

reflected  wave  amplitudes Ri and  N  unknown  transmitted  wave  amplitudes Ti. This system 

can be solved  directly  to  find all unknowns simultaneously  but  this  would  be  highly 

inefficient,  particularly for large L. To increase  the  efficiency of  the  numerical  computation 

the  number  of  equations  can  be  reduced  by  eliminating  the 2N x L unknown  amplitudes  in 

the  layers ( C; and C; ) resulting  in  a  system of 2N equations  for unknowns Ri and Ti. To 

prevent  numerical  instabilities  associated  with  inversion  of  ill-conditioned  matrices  and 

increase  the  accuracy of  the  computation,  the  enhanced  transmittance  approach  presented  in 

[3 11 is  utilized  to  calculate  the  reflected  and  transmitted  wave  amplitudes.  Once  the  reflected 



and  transmitted 

determined  from 

diffraction orders have  been found, the  diffraction  efficiencies  are 

the  formulas 

111.2. Forward  Scattering  via  E-field  Integral  Equation 

The following  formulation  is  also  presented  in  a  more  detailed  fashion  in [34]. It is 

suitable for geometries such as  the  dielectric  grating  stack  illustrated  in Fig. 5, but  can 

handle  more  general  structures  including, for example,  those  having  a  thickness t(x) 

variable over the cell. The  cell  material  is  characterized  by  possibly  complex  permittivity 

and  permeability.  In  analogy  with  the  alternative  formulation  presented  in  the previous 

section,  the  polarization  with  the  electric  field  parallel  to  the  strip  will  be  considered (TE - 

polarization). To properly  pose  the  scattering  problem  for  a  periodic structure, the 

excitation  field  must  be  a  function  with  constant  amplitude  and  linear phase. The  incident 

field is defined  as [32] 

E' ( x , z >  = E ~ I , V ~ ( X )  eikLoz 

where  the  Floquet  Harmonic is given  by 

and 



2?r k,,, = -m + k,,, kx, = k ,  sin 8’ 
T, 

and  the eJm time  convention  is  again  used.  According  to  the  electric  field  integral equation, 

the unknown induced  current J(p) is found, at  each  design  frequency/illumination angle, 

from 

where  all components are y directed,  and x is the  contrast  function ~ ( p )  = E , @ )  - 1. The 

scattered  field  is  found  from  integrating  the  induced  currents  over  the  grating 

where Gp is the  two-dimensional  periodic Green’s function - the  outgoing  Hankel 

function of order zero - representing  the  field  due to source  points  within  each  cell [33]. 

Using  this  periodic  spatial  Green’s  function,  the  integration  area is that of one  periodic cell. 

Equation (10) contains  an  integrable singularity, occurring  as  the source and  observation 

points  are  made to coincide. A method for isolating this singular  point  and  performing  the 

integration  in an efficient  manner  is  summarized  in [34,35]. The  result is 



The  method  of  moments  is  used  to  solve  the  above  integral equation. The 

numerical  solution of (9) is found by first  discretizing  the  current  over  a  periodic  cell  in  a 

pulse basis set 

and  subsequently  using  point  matching,  with  the  testing  functions  being  delta functions. 

The matrix  system for the  unknown  coefficients C is  then 

The  matrix  of (1 3) depends  on  the  materials  through  the  contrast x .  However, it 

can be represented  as  a  product of a  material-independent  matrix  times  the  vector  of  the 

contrasts at each discretization cell. Therefore,  the  basic  matrix is filled  only  once for each 

design frequency, and it is  simply  updated  at  each  iteration  step  by  multiplication  with  the 

current  vector of contrasts. For  a  cell  with  general  inhomogeneities  there is one 



independent  contrast  value for each  discretization  cell  used  in  our  method of moments. For 

the  type of devices of concern to us, we  constrain  the  grating  periodic  cell  to  be  composed 

of a number of  regions  with  different  materials,  separated  by  boundaries,  and  arranged  in  a 

combination of homogeneous  horizontal  layers andor strips with x varying  along  the x 

and z directions. Alternative  geometries, such as  those  illustrated  in Fig. 6, can also be 

modeled  with  this scheme. Then  the  set of inversion  parameters for the GA, i.e. the 

different  values for x and  boundary  locations  along x and z ,  is much  smaller  than  the 

number  of  discretization  cells.  A  mapping  algorithm  transforms  this  reduced  parameter  set 

for a  candidate  solution  to  the  full  vector of contrasts  at each discretization cell. 

Assuming  that  only  the  dominant  (m = 0) mode  is propagating, the  reflection  and 

transmission coefficients  are found from  evaluating  the  total  field  at  z >> t,  and  z <<O 

respectively, 

where  the  transform of  the  current is given  in [33]. 

In designing  a  filter  the  desired  behavior of reflection  or  transmission  efficiencies 

(RR* or TT*) within  a  continuous  range of frequencies is often  specified; since the 

coefficients  of  the  current  are  frequency  dependent  it  would  appear  that  to  evaluate  the 

response of a  candidate  many  method of moments solutions of (9) must be calculated. 

However, any  prescribed  filter  response  must  satisfy  the  condition of realizability.  It is 

well  known  from  classical  lumped  parameter  filter  design  that  realizability  requires  that  the 



insertion loss, as a function  of  frequency, be representable as the  ratio  of two polynomials 

of even powers of  frequency. Then the problem is reduced  to  representing  the desired filter 

response by a  quotient  of  polynomials,  working  with a set of  prescribed  values  sufficient 

to determine  the  unknown  coefficients. As discussed  in [33], the  general  representation 

for a  magnitude-squared  network  transfer  function  with  poles  and  zeroes is given by 

N-l  

j = O  

where the quantity on the left-hand-side is either RR* or TT*. Equation  (15) can easily be 

turned  into a system of equations in the 2xN+K unknowns Aj, Bj and Cj. Hence the 

solution  of (9) is calculated only  at  2xN+K  design  frequencies,  and  the  correspondent  values 

for  (14a)  or  (14b)  are  used  to  solve  for  (15).  The  polynomial  approximation  of  (14a) or 

(14b)  are  then  obtained  at  all  frequencies of interest,  and  used  in  the  evaluation  of  the 

residual.  In  our  implementation  we  investigated  prescribed  insertion loss functions  which  can 

be  represented  very  well  by  Equation  15,  and  in  the  case  of  a  Butterworth  response  discussed 

in  the  following,  exactly.  Naturally,  the  frequency  response of a  distributed  system  might  not 

be  consistent  with  (15),  and  a  thorough  investigation  of  its  applicability  is  beyond  the  scope 

of  this  work.  However,  since  we  are  concerned  with  filter  designs  in  the  neighbourhood  of 

one  resonance,  it  is  expected  that (15) will apply  approximately to the  filter  transmittivity 

and/or  reflectivity.  Indeed, for the  examples  reported in IV.2, we  verified a posteriori that 

the solutions  calculated by extrapolation  from  (15)  were  in  agreement  with  those  calculated 

directly. 

IV. NUMERICAL  RESULTS 



IV.l. GA Convergence  Properties 

The results reported  in  this  subsection  were  obtained  using  the  forward  scattering 

model  outlined  in Sec. 111.1, together  with  a  sequential  implementation  of PGAPACK. 

The  objective  was to study  the  convergence  properties  and  the  solution  features of  the  GA 

as  a function of  some  of its key  parameters such as  type of encoding  (real versus binary), 

replacement percentages, and  mutation  probability for the  same problem. To this end we 

generated N = 50 design  values of reflectance,  non-uniformly  distributed  in  the  range 

0.546 nm - 0.554 nm  of wavelengths, corresponding  to  a  single  grating  filter of thickness 

d = 0.134 nm, period A = 0.3 14 nm, fill  factor f = 0.5 and  dielectric  indices of refraction 

nH = 2.1 and  nL = 2.0. This structure  has  a  resonance  at 0.5503 nm  with  reflectivity 

0.9917. The  angle  of  incidence  was  taken  to  be O”, the  medium of the  incoming  plane 

wave was assumed to be air, the  medium  of  the  exiting  plane  wave  had  refractive  index 

1.52, and 7 harmonic  waves  were  used  in  the  truncated  series of Eq. 5. The  residual was 

calculated  as  follows 

and  the  difference  is  taken  between  the  reflectance  value  correspondent  to  the  candidate  GA 

solution (cal) and  the  reference.  The  value of n correspondent  to  the results reported  in this 

subsection was 2. Keeping  the  cell  periodicity fixed, the  GA  optimized for the thickness, 

fill  factor  and  materials, choosing from  a  table of 13 values  of user specified  refractive 

indices. Of the  many GA parameters we found  that  our  problem  was  very  sensitive to two, 

the  mutation  probability  and  the  population  replacement,  when  contrasting  real versus 

binary  encoding  performance. Hence, the  population  size  was  fixed  at 500, the crossover 

type  was  uniform  with  probability  fixed  at 0.8, and  the  number of generations  and  mutation 



probability  were  varied.  For  the  real  encoding  the  mutation  type  was  chosen to be gaussian 

with  standard  deviation CY = 0.1. We  specified  to  have  the  newly  created strings undergo 

both crossover and  mutation.  The  results  illustrated  in Figs. 7-9 are for real-encoding. 

Figure 7 illustrates  the  behavior  of  the  (smallest)  residual as a  function of the 

mutation  probability  after 200 generations,  when  replacing 200 strings  per  generation.  The 

improvement  with  the  increase  in  mutation  probability is to  be  expected since, for real- 

encoded chromosomes, mutation  plays  a  critical  role  in  fine-tuning  the solution. The  fact 

that  the  residual  decrease is not  monotonic  with  increase  of  mutation  probability is 

attributed to the  limited  statistical  sample of  realizations  considered  in  the  numerical  tests. 

Figure 8 shows the behavior  of  the  residual  as  a  function  of  time  (one  point  every 

five generations, starting  with  the  fifth itself) for various  values of mutation probability. 

The  same GA parameters  as  discussed  above  were  retained.  Note  that again, the 

convergence is not  monotonic,  as  shown  in Fig. 8b, and  that  it  is  questionable to decide 

whether the probability 1.0 is  preferable to 0.5. In fact, the  residual drops faster in the case 

when  the  latter  value  is chosen. Again,  it is possible  that  this  effect is due to the  limited 

statistical  sample  used  in  the  numerical  tests. 

Figure 9 reports  the  behavior of  the  residual  as  a  function  of  the  number  of strings 

replaced  at  each generation. As expected,  at  first  the  rate of convergence is higher  when 

increasing  the  number of strings replaced  at  each  generation,  but  only up to  a point. In 

fact, the curve shows that  replacing up to 50% of  the  population  at  each  generation results 

in  a  small  convergence  rate,  but  at  the  same  time  the  best  rate  was  achieved  when  replacing 

40%. Even  accounting  for  the  possible  statistical  limitation,  the  results shown nevertheless 

indicate  that  relatively  high  replacement  percentages  produce  the  best  convergence. 

Similar  convergence  tests  were  conducted  using  binary  encoding  with 10 bits to 

represent the thickness,  8  bits to represent  the  fill  factor  and 4 bits  to  represent  the  pointer 

to the  set  of  materials.  The  same  population  number  of 500 was  retained,  uniform 

crossover with  probability 0.8, and  both crossover and  mutation  were  specified  to  occur  in 



the formation of  new strings. On  the  other  hand,  the  number of generations  was  increased 

to 400, since the  values of  the  residuals  tended  to  remain high. Figures 10-12 illustrate  the 

results for convergence. 

Figure 10 illustrates  the  behavior  of  the  (smallest)  residual as a function of the 

mutation  probability  after 400 generations,  when  replacing 50 strings per generation. In 

contrast  with  the  choice  for  real  encoding,  the  smaller  replacement  value  (10%)  was chosen 

here, as  recommended  in  the  literature.  Note  the  significant  difference  with  the  real 

encoding  case  in  the  impact of  mutation  probability  on  convergence; as suggested in  the 

literature  small  values  give  the  best  performance,  although  the  tests  show  non  monotonic 

convergence, and  higher  sensitivity  on  mutation  probability. 

Figure 11  illustrates  the  convergence  as a function of time,  and  it should be 

contrasted  with Fig. 8 for the  real case. We  can  see  that for binary encoding, even  after 

400 generations, the  residual  is  not  as  small  as  that  obtained  with  real  encoding  after 200 

generations.  We  attribute  this  fact to the  limitations of the  binary  representation  (although a 

large  number of bits was used), or  equivalently,  the  improved  performance of the  real 

encoding. Indeed  we verified, through a few  numerical tests, that  by  increasing  the 

population  size  we  could  reduce  the  residual  obtained for binary  encoding to the  smaller 

values  obtained for the  real  case,  at  the  cost of increased  computation. 

Figure 12 shows the  convergence  as a function of  time corresponding to different 

replacement values. It  is  noted that, in  contrast to the  real  encoding case, smaller 

differences  in  residual at convergence  are  obtained  depending  on  the  replacement choice, 

indicating  that all four values  perform  equivalently,  when  accounting for different 

generations  required  to converge. In fact, in  terms  of  computational cost, replacing 50 

strings and  running for 400 generations  yields  very  similar  results  to  replacing 100 (250) 

and  running for 200 (80) generations. Hence  binary  encoding  is less sensitive to values  of 

replacement  per  generation  and  more  sensitive  to  mutation  probability. 



Concerning  the  solution  quality, our problem  does  not  have  a  unique solution, at 

least for the  limited  range of values  specified  in  the  design  and  the  current  scheme for the 

residual  calculations.  The  genetic  algorithm  identified  several  distinct solutions, all 

exibiting  a  resonance  at  the  correct  location,  one of which  was  the  structure  originally  used 

to  generate  the  design data. The  different  solutions  have  different features, merits  and 

drawbacks,  and  an  evaluation of the  solution  quality is bound  to  be  very  problem specific. 

A  preferred  encoding  has  not  been  clearly  identified  by  these  tests. 

IV.2. Novel  Filter  designs 

The results reported  in  this  subsection  were  obtained  using  the forward scattering 

approach  outlined  in Sec. 111.2 together  with  a  parallel  implementation of PGAPACK. 

They  are also illustrated  in [34]. Additionally,  we  restricted  our  attention  to  real-encoded 

chromosomes, constructed as the  sequence  of  material  permittivities  followed  by  the 

boundary locations. The  order  started  with  the  bottom  layedgrating  and  proceeded  in  the 

direction  of  the  positive x direction.  For  real  encoding  the crossover operation 

implemented  in  PGAPACK  is  ‘swap-only’;  that  is to say  that  when  two  parents  combine  to 

form an offspring, portions of  their  chromosomes  are  simply  copied  as such in  the 

resulting string. By  contrast  other  implementations  exist  where  arithmetic or geometric 

averages of the  allele  values  being  swapped  form  the  child strings [26]. In this  portion  of 

the  work  we always used uniform crossover and  Gaussian  mutation type. With this choice 

the  allele is mutated  by  adding  a  random  number  obtained from a  Gaussian  distribution 

with  zero  mean  and  standard  deviation  prescribed  by  the  user  to  be  a  percentage of  the 

current  allele’s  value.  Typically,  five  to ten  percent  was  specified  in our test runs. Larger 

percentages  resulted  in  less  desirable  (higher  residual  value)  solutions for the same  number 

of generations. One  can  see that, with  this  real encoding, crossover is the  most  important 

operation  during  the  early generations, when  the gross features of a good solution  are 



evolved. Later on  mutation  becomes  the  critical  mechanism  which allows the  fine  features 

of the solution  to emerge. In the  following cases the crossover probability  was  fixed  at 

85% and  we  elected to have  the  recombining  chromosomes  always undergo crossover and 

mutation. 

The  essence of our parallelization  strategy consists of distributing  the  work  of 

evaluating  the  candidate  solutions  generated  at  each  iteration  among  the  ‘slave’ processors, 

while  the  ‘master’  receives  the  calculated  residuals  and  proceeds  to  perform  all  the GA 

related operations. Hence, each  ‘slave’  processor  computes all the  necessary MOM 

solutions for a  given  candidate.  In  order  to do this  efficiently  each processor stores all  the 

necessary  impedance  matrices,  one  for  each  frequencyhllumination angle. This strategy is 

preferable to having  the  impedance  matrices  reside  only  on  one  processor  and  communicate 

with all others, as  long as the  matrices  can  all  fit  in  the  processors’  memory. In this  type  of 

problem  the order of the  matrix  is  about 100, so that  the  storage of up to about 20 complex 

full matrices  on one JPL Cray T3D processor (62 Mbytes) is possible.  With  the growth of 

the  problem  size  one  will  eventually  have  to  distribute  the  matrices  among  the processors. 

To keep  a  good  load  balance  the  number  of processors has  to  be  decided  based  on  the 

number of  replacement strings generated  at  each  iteration. Ideally, each processor should 

do at  least one set  of MOM calculations per generation, to avoid  idle  time. However, if  the 

number  of  generations is small  and  the  overall  calculations  in  the  generational  replacements 

is  much  smaller  than  the  initial  population,  then  it  is  most  efficient  to choose to  number  of 

processors  based  on  the  initial  population  size. 

A novel  design for a  narrowline  bandpass  filter in  the microwave  region is 

presented  in Figure. 13. By  allowing  the  unknown  dielectric constants to span the  range 

between  1  and 10 - a  realistic  assumption  in  the  microwave  region - we  have  obtained  a 

solution for a  three-material  single  waveguide-grating  transmission  filter  with  a  bandwidth 

of 0.7% of  the  central  wavelength of 3 cm. The  geometry  of  the  cell  and  illumination 

condition  is  reported  in  the figure, together  with  the  obtained  filter response. The  grating 



period A and  thickness  were fixed, and  we  solved for the two geometric  boundaries 

(ranging  between 0 and A ) and  three  material  permittivities  (ranging  between  1  and 10. 

The  prescribed response is  a  Lorentzian  line  approximated  according  to (15); for this 

particular case we  determined  numerically  that N=2, K=l was  sufficient  to  represent  the 

Lorentzian  with  at  least  six  digits of accuracy. As a  results  five  design  wavelengths  were 

used to specify RR*: 2.5, 2.75, 3, 3.25 and 3.5 cm. The  residual  was  actually  evaluated 

for a set of 103 wavelengths, not  equally  distributed  in  the  range 2.5 - 3.5  cm, but  rather 

having  a  denser  distribution  in  a  small  region  around  the  expected  resonance (21 points  in 

the  range 2.98 - 3.02 cm). We  took  the  population  size to be 3000 with  replacement 

through cross-over and  mutation  of  up  to 300 (steady  state)  at  every  generation  and 

performed  the  calculations  on  the JPL Cray  T3D.  Gridding  the  cell  with 21 x  7  points was 

sufficient to achieve  convergence  to  the  solution  reported  in  the  figure  in  about 150 

iterations. For each  iteration,  the  overall  cost of  replacement, i.e. the  time  necessary  to 

evaluate  the  newly  created strings at  each  iteration,  was  about  5 seconds using 64 

processors. 

As an  example  of  a  stopband  filter,  a response described  by  a fourth order 

Butterworth  polynomial  with  bandwith of 8% of  the  center  wavelength  was  input  to  the 

genetic  algorithm  as  a  prescribed  reflectivity. A synthesized  two-grating solution, the 

simplest  realization  with  the  smallest  cell  size  which  was found, is illustrated  in Figure 14, 

with  the  obtained response contrasted  with  the  desired one. Sixteen  wavelengths  were 

specified to exactly  represent  the  Butterworth  curve  according  to (lo), and  the  residual was 

calculated  at 51 points. Both sets of points  were  uniformly  distributed  in  the  range of 

interest of 2.5-3.5 cm. The trial  cell size was  chosen to be  2x2.7 cm and was  gridded  with 

10x14 points. A population  size  of 4000 with 10% replacement  was chosen, and 

convergence was  reached  in  about 300 generations.  The  calculation  was  performed  on  the 

Cray T3D using  128  processors  in  about  1  hour  with  a  cost of replacement of about  13 sec. 
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include  "pgapackf.  h" 

external  evaluate 

integer  ctx 

ctx = PGACreate  (PGA-DATATYPE-BINARY,  100,  PGA-MAXIMIZE) 

call PGASetUp (ctx ) 

call PGARun  (ctx,  evaluate ) 

call PGADestroy(ctx 1 

stop 

end 

double  precision  function  evaluate (ctx, p, pop) 

include  "pgapackf.  h" 

integer ctx, p, pop, i, bit, nbits, stringlen 

stringlen = PGAGetStringLength(ctx) 

nbits = 0 

do i=l, stringlen 

bit = PGAGetBinaryAllele(ctx,  p,  pop, i) 

if (bit .eq. 1) then 

nbits = nbits + 1 

endif 

enddo 

evaluate = dble(nbits) 

return 

end 

Figure  1.  Fortran  Program  for  the  'Maxbit'  Example.  The  user  provides  the  function 

evaluate to specify  the  merit of a candidate  solution. 



#include  <pgapack.h> 

#define  NUM-LAYERS 4 /* composite  material  has 4 layers */ 

#define  NUM-MATERIALS 6 /* choose  among 6 materials  per  layer */ 

typedef  struct { 

int layer[NtJ"LAYERS]; /* material  type */ 

double  thick[NUM-LAYERS]; /* material  thickness */ 

} composite; 

double  weight  (double *, int *); 

double  Evaluate  (PGAContext *, int, int); 

int CompMutation  (PGAContext *, int, int, double); 

int  main(int  argc, char **argv) { 

PGAContext  *ctx; 

int m i t e r ;  

ctx = PGACreate(&argc, argv, PGA-DATATYPE-USER,  2*NUM_LAYERS, 

PGA-MINIMIZE); 

PGASetUserFunction  (ctx, PGA-USERFUNCTION-MUTATION, CompMutation); 

PGASetUp (ctx); 

PGARun  (ctx,  Evaluate); 

PGADestroy  (ctx); 

return; 

1 



Figure 2. Main Program for  ‘Composite’  Data  Type,  a  user-defined  data  type  which  can be 

integrated  with  PGAPACK. 

int CompMutation(PGAContext *ctx, int  p,  int  pop,  double mr) { 

composite  *comp; 

int i, count = 0; 

comp = (composite  *)PGAGetIndividual(ctx,  p, pop)-xhrom; 

for (i = 0; i < NUM-LAYERS;  i++) 

if  (PGARandomFlip(ctx, mr)) { 

if (PGARandomFlip(ctx, 0.5)) 

comp->thickness[i] += PGARandomGaussian(ctx,O., 1 .); 

count++; 

1 
for  (i = 0; i < NUM-LAYERS;  i++) 

if (PGARandomFlip(ctx, mr)) { 

comp->layer[i] = PGARandomUniform( 1 ,NUM-MATERIALS); 

} 

return  (count); 

1 
Figure 3. One possible  definition of the  mutation  operation for ‘Composite’  Data  Type. 

double  Evaluate(PGAContext  *ctx, int p,  int  pop) { 

int i, j ;  

int  l[NUM-LAYERS]; 

double  t[NUM-LAYERS]; 



composite  *comp; 

comp = (composite  *)PGAGetIndividual(ctx,  p, pop)-xhrom; 

for (i = 0; i < 6; i++) 

l[i] = comp->layer[i]; 

for (i = 0; i e 6; i++) 

t[iJ = comp->thickness[i]; 

return ( weight(1,t) ); 

I 

Figure 4. Example  evaluation  Function for Composite  Data Type. 
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Fig. 5 Multilayer  stack of grating  and  homogeneous layers used as narrowband  filter. 



Figure 6. Periodic  cell  corresponding to two  possible  filter  realizations,  alternative  to  that of 

Fig. 5, which can be synthesized with the scattering  model of 111.2. 
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200, gaussian  mutation  with CT = 0.1, uniform  crossover  with  prob. = 0.8. 
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Figure 8. Convergence  history  for  real  encoding  with  different  mutation  probability. 

PGAPACK  parameters;  population = 500, replacement  per  generation 200, uniform 

crossover  with  prob. = 0.8. 
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Figure 9. Convergence  history  for  real  encoding  with  different  replacement  values. 

PGAPACK  parameters;  population = 500, gaussian  mutation  with  probability 0.5 

and CT = 0.1, uniform crossover with  prob. = 0.8. 
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Figure 10. Residual as a function of mutation  probability  for  binary encoding. PGAPACK 

parameters;  population = 500, generations = 400, replacement  per  generation = SO, 

uniform crossover with  prob. = 0.8. 
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Figure 1 1. Convergence  history  for  binary  encoding  with  different  mutation  probability. 

PGAPACK  parameters;  population = 500, replacement  per  generation 50, uniform 

crossover  with  prob. = 0.8. 
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Figure 12. Convergence  history for binary  encoding  with  different  replacement  values. 

PGAPACK parameters;  population = 500, mutation  with  probability 0.005, 

uniform crossover with  prob. = 0.8. 
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Figure 13. Transmittivity  response  for  three-material  single-grating  filter  designed  to  satisfy 

a Lorentzian lineshape. Cell  size is Tx = 2.2 cm, thickness = 0.9 cm. Boundary 

locations  are  at xl, = 1.15, x23 = 1.78 cm.  Dielectric constants of materials  from 

left to right are E, = 2.498, E, = 7.939, E, = 10. 
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Figure 4. Reflectivity  response for double-grating  filter  designed  to  satisfy a Buttenvorth 

lineshape of the fourth order.  Cell size is Tx = 2.5 cm, thickness = 2.7 cm. 

Boundary locations along x are  at x,, = 1.5 cm (bottom grating) and x34 = 1.25 cm 

(top  grating).  Thickness of bottom  grating is 0.96 cm.  Dielectric  constants of the 

four materials are E, = 1.319, E, = 9.172, E, = 3.638, = 4.113. 


